
Motion Estimation and Segmentation in
Images

Siddharth Jain

November 25, 2003

Abstract

Given a pair of images of a scene taken from two different view-
points by a camera undergoing primarily translational motion with
little rotation, we attempt to segment the pixels undergoing coherent
motions and estimate their motion by fitting an affine motion model.
This is done by starting with an initial guess of motion estimates. The
motion estimates are then used to segment the pixels in the images
into different layers or clusters. Affine motion models are then fitted
to pixels in the individual clusters to obtain new motion estimates and
the process is continued iteratively. Applications of this work include
for example splitting a scene into different layers such as a foreground
layer which is close to the camera and in which pixels are moving
rapidly and a background layer which is far away from the camera
and in which pixels are undergoing relatively little motion.

1 Introduction

Consider two images of a scene taken by a camera from two different view-
points e.g. Figure 1(a) and 1(b). The tree is much closer to the camera than
the house and therefore between the two images, the tree undergoes a motion
greater than the motion of the house. We are interested in grouping pixels
undergoing similar motions and thereby segmenting the image into layers
undergoing similar motions.

Consider a 3D point P = (X,Y, Z) observed from two viewpoints C0

and C1 by a perspective imaging camera as shown in Figure 2. Without
loss of generality, C0 can be taken to be the world origin and the local x̂,
ŷ, ẑ axes of the camera at position C0 can be taken to be the world x̂, ŷ,
ẑ axes. The coordinates of P after perspective projection are then given

1

(a) (b)

Figure 1: A pair of images. We want to group pixels undergoing similar
motions.

Figure 2: A perspective imaging camera capturing two images of point P
from positions C0 and C1. The camera does not undergo any rotational
motion.

2

by Q = (X/Z, Y/Z, 1). In order to get the pixel coordinates of P in the
camera image, Q has to be transformed by the intrinsic camera calibration
matrix [MSKS03]. Letting R denote the pixel coordinates of P in the image
taken by the camera,

R =

 u
v
1

 =

 fsx fsθ Ox

0 fsy Oy

0 0 1

 X/Z

Y/Z
1

 (1)

For most cameras the skew of the pixel sθ is very small and can be neglected.
Then the pixel coords of P in image 1, (u, v) are given by,

u = fsxX/Z + Ox

v = fsyY/Z + Oy

In the second view, let the center of projection (COP) of the camera be po-
sitioned at C1 = (Tx, Ty, Tz). If the camera has not undergone any rotational
motion so that the local x̂, ŷ, ẑ axes at C1 point in the same direction as the
local axes at C0, then the coords of P relative to the local coordinate system
at C1 are given by (X − Tx, Y − Ty, Z − Tz) and the pixel coords in image 2,
(x, y) are given by,

x = fsx
X − Tx

Z − Tz

+ Ox

y = fsy
Y − Ty

Z − Tz

+ Oy

which after some manipulation can be written as

x =

(
1

1− Tz/Z

)
(fsxX/Z + Ox) + Ox

(
1− 1

1− Tz/Z

)
− fsx

Tx/Z

1− Tz/Z

= F1u + F2

y =

(
1

1− Tz/Z

)
(fsyY/Z + Oy) + Oy

(
1− 1

1− Tz/Z

)
− fsy

Ty/Z

1− Tz/Z

= G1v + G2

For constant f , sx, sy, Ox, Oy, Tx, Ty, Tz; F1, F2, G1, G2 are functions of Z
only. Morever, G1 is equal to F1 in above. Thus,

(
x y 1

)
=
(

u v 1
) F1(Z) 0 0

0 G1(Z) 0
F2(Z) G2(Z) 1

 (2)

3

which we can write concisely as p2 = p1 · θ where p2 = (x, y, 1), p1 = (u, v, 1)
are row vectors and θ is given by the matrix in above equation. The matrix
θ tells how pixels move from image 1 to image 2 and is thus known as the
motion matrix. If we have a group of pixels that are images of 3D points with
the same Z i.e. having the same depth, these group of pixels have the same
motion matrix θ associated with them. It is thus possible to identify pixels in
the image that are moving in the same fashion — these pixels have the same
motion matrix; and regions in the image that are moving differently will have
different motion matrices associated with them. Recall that θ in equation
(2) holds when the camera does not undergo any rotational motion between
the two capture points C0 and C1. In practice little rotational motion of the
camera is modeled by a motion matrix of the form

θ =

 θ11 θ12 0
θ21 θ22 0
θ31 θ32 1

 (3)

and this is referred to as an affine motion model. We now have a chicken-
and-egg problem in that

• If we know the motion matrices of the different layers in the image, we
can segment each pixel based on which motion matrix fits it better.

• Conversely, if we know the motion segmentation and correspondence of
the pixels in the two images we can estimate the motion matrix using
p2 = p1 · θ.

In reality we do not know either. The problem is solved using a K means
or EM algorithm in which we start with initial guesses of motion matrices
and do the motion segmentation. Then using the motion segmentation we
find improved estimates of motion matrices and iterate. Following sections
describe the algorithm in more detail.

2 The Algorithm

The algorithm starts by assuming that the image can be segmented into M
layers and some initial guesses of the motion matrices (θ1, θ2, . . . , θM) for the
M layers are given. It then proceeds according to following steps:

2.1 Motion Segmentation

For each pixel the algorithm finds the θi that fits it best and declares the
pixel as belonging to layer i. This is done in the following way: let p denote

4

the pixel (u, v, 1) in image 1 which is to be classified. Under motion model
θi, p maps to dest(p|θi) = (x, y, 1) = p · θi in image 2. Let I(p) denote the
RGB color value at pixel p. Thus I(p) = (r, g, b) where r, g, b are integers
lying between 0 and 255 for a true 24 bit RGB color image (0 ≤ r, g, b ≤
255). Further if I(p1) = (r1, g1, b1) and I(p2) = (r2, g2, b2) are the color
values at two pixels p1 and p2 let ‖I(p1)− I(p2)‖ denote the color difference
between pixels p1 and p2 which is assumed to lie between 0 and 255 and

can be measured for example as
√

(r1−r2)2+(g1−g2)2+(b1−b2)2

3
. A simple way of

classifying pixel p is to assign it to the layer that gives the minimum value
of ‖I(p) − I(dest(p|θi))‖ i.e. if the variable z(p, i) denotes the membership
of pixel p in image 1 to layer i and

θi = arg min
θ
‖I(p)− I(dest(p|θ))‖

then the algorithm sets

z(p, j) =

{
1 j = i
0 otherwise

Above approach relies on several assumptions which we make explicit now.
If (a) the motion of pixel p is indeed affine and θi is known accurately, and
(b) the 3D point whose image is p is unoccluded in image 2, then, the cor-
responding pixel of p in image 2 is given by dest(p|θi). In addition if (a)
a Lambertian reflectance model1 applies to the 3D point whose image is p,
and (b) the lighting conditions do not change from image 1 to image 2, then,
color of dest(p|θi) will be same as color of p. Thus ‖I(p)− I(dest(p|θi))‖ will
be small only when all of the above conditions hold. For the experiments we
demonstrate in this report, the assumptions of Lambertian model and con-
stant lighting hold fairly well but since θi is only known approximately and
occlusions may occur between images, the algorithm searches for the best
match to p in a window centered at dest(p|θi). The details of the matching
process are as follows:

2.1.1 Finding the BestMatch

A rectangular window w in an image is a collection of pixels denoted in
following ways:

1A Lambertian reflectance model simply means that the reflection from the object is
not dependent on the direction from which the object is viewed i.e. the object reflects
equally in all directions. A mirror is an example of an object that is not Lambertian as it
reflects primarily in one particular direction; such objects are termed as specular.

5

• w = win((x1, y1)-(x2, y2)) denotes the window with top-left corner at
pixel (x1, y1) and bottom-right corner at pixel (x2, y2)

• w = win(x, y, wxmin, wxmax, wymin, wymax) denotes the window
with top-left corner at (x + wxmin, y + wymin) and bottom-right cor-
ner at (x + wxmax, y + wymax). Normally in our discussion:
wxmin + wxmax = 0
wymin + wymax = 0
and so (x, y) is the center pixel in this window. Morever if wxmax =
wymax then the window is symmetric in x and y directions and wxmax
is referred to as the half-size of the window.

• w = win(wxmin, wxmax, wymin, wymax) is window of size
(wxmax− wxmin + 1)×(wymax− wymin + 1) pixels whose center pixel
is unspecified.

For two windows of the same size w1 = win(x1, y1, wxmin, wxmax,wymin,wymax)
and w2 = win(x2, y2, wxmin, wxmax,wymin,wymax) a pixel (x, y) in w1 has
a corresponding pixel in w2 given by (x2 + (x− x1), y2 + (y − y1))

2. For two
windows of the same size we can measure the difference between them as the
rms (root mean square) difference in color values of corresponding pixels:

RMS(w1, w2) =

√∑wymax

y=wymin

∑wxmax

x=wxmin
δ(x1 + x, y1 + y)δ(x2 + x, y2 + y)d2(I(x1 + x, y1 + y), I(x2 + x, y2 + y))

N(w1, w2)

(4)

where d denotes the difference between two colors (which can be measured
for example as root mean square of difference of RGB values).

δ(x, y) =

{
1 if I(x, y)is known
0 otherwise

N(w1, w2) =
wymax∑

y=wymin

wxmax∑
x=wxmin

δ(x1 + x, y1 + y)δ(x2 + x, y2 + y)

N(w1, w2) is the number of nonzero terms in the numerator of (4). The δ’s
have been introduced in equation (4) to take care of pixels at the border of
the image. RMS(w1, w2) thus lies between 0 and 255.

In order to find the best matching pixel to p under motion given by θi

a correlation window wp is taken centered at p and whose half-size is set

2Note that this use of the word correspondence must not be confused with the other
context in which we use the word. Consider a 3D point P that is unoccluded in both
image 1 and image 2. Let the image of P in image 1 be given by pixel p. When we speak
of the corresponding point of p in image 2, we mean the pixel in image 2 that is the image
of the same 3D point P .

6

Figure 3: Finding the best match. The center of the best matching window
lies in the search window and its RMS difference from wp is minimum.

to 4 in all of our experiments. The algorithm then finds the best matching
window to wp in image 2 denoted by best(wp|θi) as illustrated in Figure 3.
best(wp|θi) is the window that minimizes the difference as measured by the
RMS metric in equation (4) and whose center is constrained to lie in a search
window srchwi centered at dest(p|θi). The best matching pixel to p is then
given by the center pixel of best(wp|θi) and denoted by best(p|θi). srchwi

is initialized to 32 and modified adaptively for different layers as explained
later in Section 2.2. Few points worth mentioning about the search window
are:

• If p belongs to layer i and θi is known accurately then best(p|θi) would
lie close to dest(p|θi) and the search window would be small. Since θi

is not known accurately, the algorithm takes into account the uncer-
tainty or error in estimation of θi by searching in a window centered
at dest(p|θi). At initialization the uncertainty is high and so we set
half-size of the search window to a high value of 32 pixels.

• Making the search window too large is also problematic because:

– The time taken by the algorithm would increase in proportion to
the size of the search window. Finding the best match is probably
the most expensive component of the algorithm.

– More importantly, if p does not belong to θi then the algorithm
should not be able to find any good match to p by searching in
a window around dest(p|θi). Therefore size of the search window
should not be made too large.

– Another reason is that if p does belong to θi, we reduce the chances
of getting spurious matches by searching in a window centered at

7

dest(p|θi) instead of searching for the best match in the whole
image.

Once the best match to pixel p under motion matrix θi has been found a
difference measure between p and best(p|θi) is defined as the product of two
quantities: 1. Euclidian distance of best matching pixel from the predicted
destination pixel, and, 2. color difference between best matching window and
correlation window at p.

D(p, θi)
def
= ‖best(p|θi)− dest(p|θi)‖ ∗ RMS(wp, best(wp|θi)) (5)

For a K means algorithm pixel p is classified as belonging to the layer that
gives minimum value of D(p, θ). Thus letting

θi = arg min
θ
D(p, θ) (6)

z(p, j) =

{
1 j = i
0 otherwise

(7)

The reason of including the Euclidian distance in the definition of D is that if
multiple layers have the same value of best(p, θi) which can occur for example
if the search window is too large, the algorithm will pick out the layer for
which best(p, θi) lies closest to the predicted destination. For EM a soft
classification needs to be done

z(p, i) =
1/D(p, θi)∑j=M

j=1 1/D(p, θj)
(8)

This completes the motion segmentation.

2.2 Compute Sigma

Associated with each layer i a quantity σi is defined given by

σi
def
=

√√√√∑p z(p, i)‖I(p)− I(dest(p|θi))‖2∑
p z(p, i)

(9)

σi in a sense tells how well θi describes the motion of layer i. This suggests
that we can use σi to adaptively update the size of the search window for
layer i. The algorithm updates the half-size of the search window for each
layer as

srchwi = min(32, max(5, σi/2)) (10)

8

2.3 Motion Estimation

After motion segmentation the algorithm finds improved estimates of θt+1
i .

We first discuss motion estimation for K means and come to EM later. Under
the assumed affine motion model if p belongs to layer i and best(p|θt

i) is best
match to p under θt

i found in the previous section on motion segmentation
then

p · θt+1
i = best(p|θt

i) (11)

The superscript t denotes the time step. Thus we can form a linear system
of equations given by

u1 v1 1
u2 v2 1
...

...
...

uN vN 1

 θt+1
i =

x1 y1 1
x2 y2 1
...

...
...

xN yN 1

 (12)

or
A · θt+1

i = B (13)

where (um, vm, 1) is pixel in image 1 classified as belonging to layer i and
(xm, ym, 1) is the best match to (um, vm, 1) found in the motion segmentation
step. Thus the algorithm can find improved motion estimates for each layer.
For each matching pair (p, best(p|θi) the algorithm assigns a confidence value
or weight given by

ηt(p, i)
def
= 1− RMS(wp, best(wp|θt

i))

K
(14)

where K is a normalizing constant to ensure that η lies between 0 and 1.
Since RMS lies between 0 and 255, K would be set to 255. However, as
explained later in Section 3 we improve the algorithm further and use pixels
for which RMS is small. In that case we set K = 60 in all our experiments.
The updated motion matrix using the weights is then given by

θt+1
i = arg min

θ

∑
p

η2(p, i)‖p · θ − best(p|θt
i)‖2 (15)

The summation is taken over all pixels in image 1 that have been classified
as belonging to layer i. It is easily shown that the solution of (15) is obtained
by solving (13) where each row of A and B is multiplied by the appropriate
weight η(p, i). The extension to EM is straightforward:

θt+1
i = arg min

θ

∑
p

z2(p, i)η2(p, i)‖p · θ − best(p|θt
i)‖2 (16)

9

The summation is taken over all pixels in the image in this case. The new
motion estimates found in this way are then used to refine the motion seg-
mentation and the algorithm iterates.

The algorithm can be very briefly summarized as:
θ(1) ← initial motion estimates

for iter = 1:T
E step: z(iter)← motion segmentation based on θ(iter) and the data avail-

able as described in Section 2.1;
srchw ← update as in Section 2.2;
M step: θ(iter+1)← new motion estimates based on z(iter) and data avail-

able as described in Section 2.3;
end for

In practice performing motion segmentation for each pixel takes up in-
ordinately huge amounts of time. Also note that in principle 3 perfect cor-
respondences is all that is required to find θ. Thus to find θ the algorithm
needs a few but good corresponding pairs. In the next section we mention a
number of modifications to the basic algorithm described in this section to
get faster and more accurate results.

3 Some modifications to the basic algorithm

At each iteration the algorithm randomly picks a pixel in image 1 and motion
segments it. If the pixel lies in a featureless region3 it is difficult to find
accurately the corresponding pixel in the other image because multiple pixels
will seem to match and there are not enough features in the correlation
window to distinguish the multiple matches e.g. try finding the corresponding
pixels of the pixels marked red in Figure 4. Thus if the algorithm gets a pixel
p that lies in a featureless region, it discards the pixel and does not use it for
motion estimation. Specifically, if the standard deviation of color of pixels
in the correlation window centered at p is less than K2 (K2 = 15 in all
our experiments), the pixel is motion segmented but not used for motion
estimation.

Feature test: Is StdDev(win(p,−4, 4,−4, 4)) > K2? (17)

Another thing to note is that if RMS(wp, best(wp|θ)) is large, this suggests
that the best match is not good enough and maybe the algorithm is better

3By featureless region we mean a region which mostly has a constant color i.e. has low
color variance.

10

(a) (b)

Figure 4: Try finding corresponding pixels in (b) of the pixels marked red
in (a). It is difficult to match featureless regions as they do not have any
distinguishing characteristics to tell them apart from spurious matches.

off not using this pair for motion estimation. Remember theoretically the
algorithm just requires a few good matches to estimate θ and the process of
finding the best match is guaranteed to give a best match — the algorithm
should further check if the best match is really a good match or not. Thus if
RMS(wp, best(wp|θ)) > K3 the pixel is not used for motion estimation. We
set K3 = 30 in our experiments.

Good Match test: Is RMS(wp, best(wp|θ)) < K3? (18)

The algorithm keeps choosing pixels randomly making sure that no pixel
is chosen multiple times, motion segments them and uses them for motion
estimation if they pass the enough features and good match tests in equations
(17, 18). The algorithm chooses as many pixels as necessary so that it has
at least K4 = 10 pairs for motion estimation of each layer. The ‘sparse
processing’ speeds up the algorithm by orders of magnitude. A final tweak
that can be employed is to note that in equation (3) θ11, θ22 are close to unity
whereas θ12, θ21 are close to zero. We impose following constraints on the
optimization problem in equations (15, 16):

0.8 < θ11, θ22 < 1.2 (19)

−0.2 < θ12, θ21 < 0.2 (20)

With these constraints we now have a constrained least squares problem
which can be solved using standard methods [Pan98].

We quickly recap the salient features of the algorithm below:

• Randomization

• Feature test equation (17)

11

• Good Match test equation (18)

• Adaptive search window size Section 2.2

• Weighted objective function equation (16)

• Constrained Optimization equations (19, 20)

A detailed pseudocode is given in Section 6 which also takes into account
pathological inputs in which all the pixels have been motion segmented in
random order but the algorithm is not able to obtain at least K4 = 10
matches, that pass the feature and good match tests, for motion estimation
of each layer.

4 Results

In this section we show results on 4 test cases in Figures 5-8. We used
two machines for computation — one running at 2783 Mhz and another
running at 699 Mhz. Both machines use Intel Pentium processors and run
on Windows OS. The time taken mentioned in this section is w.r.t. a 2783
Mhz processor where the time taken by the processor running at 699 Mhz
was multiplied by 699/2783 = 0.25 to translate to the time scale on the 2783
Mhz machine. The code is written in MATLAB. We implemented the K
means version of the algorithm and did 10 iterations on all 4 test cases. The
number of layers M was set to 2 and the motion matrices were initialized to

θ1 =

 1.0 0.0 0.0
0.0 1.0 0.0
35.0 0.0 1.0

 and θ2 =

 1.0 0.0 0.0
0.0 1.0 0.0
−10.0 5.0 1.0

 for the two layers.

The flower garden images (Figure 5) are 200×137 pixels and all other images
are 200×150 pixels. All images are 24 bit true color images. Based on the
randomization and sparse processing mentioned in Section 3, the running
time of the algorithm is independent of the image size. Generating a dense
motion segmentation as in Figures 5-8 (c), (d), (g), (h) however requires
segmenting each pixel and the time taken for this obviously increases in
proportion to the image size. In Figures 5-8 (a), (b) show the input images;
(c), (d) show motion segmentation of (a) at the end of 10 iterations; (e),
(f) show motion estimates for the two layers in (c), (d) at the end of 10
iterations; (g), (h) show motion segmentation for (a) at some iteration when
σ is small and is mentioned for the different cases respectively later in the
discussion; (i), (j) show motion estimates for the layers in (g) and (h); (k)
shows the variation of σ vs. the iterations for the two layers. We describe
the results in more detail below:

12

Flower Garden: This is shown in Figure 5. Figure 5 (k) shows a general
trend of decrease in σ as the iterations progress although it exhibits a little
oscillatory behavior. Figures 5 (c), (d) show the motion segmentation of
Figure 5(a) into two layers after 10 iterations. The motion estimates for
the two layers in (c), (d) after 10 iterations are given in Figures 5 (e) and
(f). The motion segmentation in Figures 5 (c) and (d) does not seem to be
perfect as there are some parts of the tree in Figure 5 (c) and parts of the
house in Figure 5 (d). In Figures 5 (g), (h) we show motion segmentation
resulting from the motion estimates at the beginning of iteration 7. These
motion estimates, which are listed in (i) and (j), are seen to give low σ values
in Figure 5 (k). The motion segmentation also appears better compared to
Figures (c) and (d). There is less of the tree in (g) and the house is almost
all in (g). The time taken was 7.5 hours for unoptimized MATLAB code.
Executable code should run much faster (10 times faster?).

Wells Fargo: This is shown in Figure 6. Fig. (k) again shows a general
trend of decrease in σ with the iterations although the oscillatory behavior
is much greater. Motion segmentation in (c) and (d) does not seem to be
very promising. Fig. (g) and (h) show motion segmentation using motion
matrices (i) and (j). These motion matrices are obtained at the beginning of
iteration 10. The motion segmentation is not very different from (c) and (d)
but note the low σ values in Fig. (k) that the motion matrices in (i) and (j)
give. The algorithm seems to have got stuck in a local minima. The time
taken was 6.2 hours.

Ross : This is shown in Figure 7. Fig. (k) shows oscillatory decrease
in σ with the iterations. Fig. (c), (d) show motion segmentation after 10
iterations and (g), (h) show motion segmentation at iteration 6. Results
appear satisfactory — the building façade forms one layer and the tree forms
the other layer. This is a hard test case because the tree is thin and occupies
little portion of the image. Time taken was 7.6 hours.

Fourth: This is shown in Figure 8. Once again Fig. (k) shows decrease in
sigma with the iterations. The oscillatory behavior is also present. Fig. (c),
(d) show motion segmentation after 10 iterations and (g), (h) show motion
segmentation at iteration 8. The results seem fair enough — the wooden
post has been marked out fairly well in both iteration 8 and at the final step.
Time taken was 4.84 hours.

The test cases give an idea of the performance of the algorithm. In
practice the algorithm has to face many challenges such as:

• Some pixels are present in image 1 but not in image 2 and vice versa.
This messes up correspondences and happens because of two reasons:
1. occlusions — an object that is present in an image may be occluded

13

by some other object in the other image and hence not appear in the
other image. 2. Field of View effects — pixels in non-overlapping
portion of the two images are present only in one image. Note this for
example in Figure 7 (d) and (h) in which one can see a vertical stripe
at the right edge of the image. Pixels in this stripe do not appear in
Figure 7 (b).

• Finding the correspondences, i.e. the best match, accurately is tricky.
Recall that here we have assumed a Lambertian reflectance model with
constant lighting conditions between the two images.

• The affine motion model is only an approximation to the real motion
of the pixels.

• Setting M = 2 may not be quite true for all the test cases. For exam-
ple in Figure 6 maybe we should use more layers. Similarly in Figure 8
maybe the wooden post, house, and the tree form 3 layers (there could
be an additional fourth layer comprising the distant background con-
sisting of the sky etc.).

5 Conclusions

We presented an iterative K means or EM algorithm for motion estimation
and segmentation in images. There is ample scope for further work:

• Perhaps the most important addition would be to determine the num-
ber of layers M automatically.

• Extension of this work to a video sequence consisting of more than just
two images. Note that in equation (2), F1, F2, G1, G2 now become
functions of Tx, Ty, Tz in addition to Z since Tx, Ty, Tz cannot be
taken to be constants now. This means the motion matrices change
with time i.e. we should not expect a single motion matrix to describe
the motion of a layer in the whole sequence. Rather we should process
consecutive images in pairs and thus we get motion estimates evolving
in time.

• Finally in this work we were more concerned with segmenting pixels
undergoing similar motions. If the task is to segment the image into
coherent objects that are moving similarly then we should utilize spatial
coherence of the image in motion segmentation and use morphological
operations as necessary to remove outliers etc.

14

(a) (b)

(c) (d)

(e) θ1 =

 0.833 0.051 0
−0.2 1.064 0

31.226 −12.757 1

 (f) θ2 =

 0.8 0.042 0
−0.073 0.980 0
−4.919 1.261 1

(g) (h)

(i) θ1 =

 0.856 −0.009 0
−0.116 0.994 0
21.176 2.876 1

 (j) θ2 =

 0.8 0.038 0
0.031 0.959 0
−12.548 3.702 1

(k)
1 2 3 4 5 6 7 8 9 10

30

35

40

45

50

55

60

65

70

75

80

iterations

σ

FlowerGarden: variation of sigma with iterations

σ
1

σ
2

Figure 5: Flower Garden (a), (b) Input images (c), (d) Motion segmenta-
tion obtained after 10 iterations (e), (f) Motion estimates after 10 iterations
(g), (h) Motion segmentation at 7th iteration (i), (j) Motion estimates at
beginning of 7th iteration (k) Plot of sigma vs. iterations.

15

(a) (b)

(c) (d)

(e) θ1 =

 1.082 −0.024 0
0.165 0.966 0
−6.413 3.323 1

 (f) θ2 =

 1.002 0 0
−0.168 1.021 0
21.754 −1.614 1

(g) (h)

(i) θ1 =

 1.131 −0.012 0
0.148 0.981 0
−8.603 2.098 1

 (j) θ2 =

 1.03 −0.04 0
−0.2 1.009 0

19.427 7.194 1

(k)
1 2 3 4 5 6 7 8 9 10

10

15

20

25

30

35

40

45

iterations

σ

WellsFargo: variation of σ with iterations

σ
1

σ
2

Figure 6: Wells Fargo (a), (b) Input images (c), (d) Motion segmentation ob-
tained after 10 iterations (e), (f) Motion estimates after 10 iterations (g), (h)
Motion segmentation at 10th iteration (i), (j) Motion estimates at beginning
of 10th iteration (k) Plot of sigma vs. iterations.

16

(a) (b)

(c) (d)

(e) θ1 =

 0.991 0.001 0
0.028 0.964 0
20.015 4.551 1

 (f) θ2 =

 0.977 −0.023 0
0.147 1.005 0
−3.619 2.918 1

(g) (h)

(i) θ1 =

 0.988 0.006 0
0.016 1.007 0
22.794 −0.745 1

 (j) θ2 =

 1.168 −0.012 0
0.169 1.034 0
−35.394 1.007 1

(k)
1 2 3 4 5 6 7 8 9 10

20

30

40

50

60

70

80

iterations

σ

Ross: variation of σ with iterations

σ
1

σ
2

Figure 7: Ross (a), (b) Input images (c), (d) Motion segmentation obtained
after 10 iterations (e), (f) Motion estimates after 10 iterations (g), (h) Motion
segmentation at 6th iteration (i), (j) Motion estimates at beginning of 6th
iteration (k) Plot of sigma vs. iterations.

17

(a) (b)

(c) (d)

(e) θ1 =

 0.8 0.2 0
−0.03 0.912 0
53.388 −15.925 1

 (f) θ2 =

 1.12 −0.043 0
0.2 1.061 0

−17.957 0.572 1

(g) (h)

(i) θ1 =

 0.8 0.176 0
−0.028 0.878 0
53.207 −12.584 1

 (j) θ2 =

 1.104 0.007 0
0.08 1.054 0
−4.473 −3.368 1

(k)
1 2 3 4 5 6 7 8 9 10

20

30

40

50

60

70

80

iterations

σ

Fourth: variation of σ with iterations

σ
1

σ
2

Figure 8: Fourth (a), (b) Input images (c), (d) Motion segmentation obtained
after 10 iterations (e), (f) Motion estimates after 10 iterations (g), (h) Motion
segmentation at 7th iteration (i), (j) Motion estimates at beginning of 7th
iteration (k) Plot of sigma vs. iterations.

18

6 Pseudocode

inputs: I1, image 1 and I2, image 2
M , the number of layers
θinit, initial value of θ
T , the number of iterations to perform

K = 60; K2 = 15; K3 = 30; K4 = 10;
θ(1) ← θinit;
halfsize(srchw) ← 32 for each layer;
for t = 1:T

while (not all pixels in I1 are processed) and
(number of pixels for motion estimation in each layer < K4)

p← choose random pixel in I1 taking care that the same pixel is not
chosen multiple times;

z(p, t)← motion segment the pixel as described in Section 2.1;
if pixel passes feature and good match tests in equations (17, 18)

add it to list of pixels available for motion estimation;
compute weight factors in equation (14);

endif
end while

if (all pixels in I1 have been processed) and
(number of pairs for motion estimation in each layer < K4)

increase K3 to K3 + 10;
try to find more matches now;
continue the process of trying to find more matches and iteratively

increasing K3 to compensate for ill conditioning of
the problem until enough pairs in each layer are obtained
or K3 becomes equal to K;

endif

Compute σ(t) and update search window size as in Section 2.2;
θ(t + 1)← solve equation (16) subject to (19, 20);

end for

z(T + 1)← dense motion segmentation based on θ(T + 1);
output: z(T + 1) motion segmentation

θ(T + 1) motion estimation

19

References

[MSKS03] Y. Ma, S. Soatto, J. Kosecka, and S. S. Sastry. An Invitation to 3-
D Vision: From Images to Geometric Models, chapter 3 equation
3.14. Springer-Verlag, 2003.

[Pan98] J. C. Pant. Introduction to Optimization: Operations Research,
chapter 4. Jain Brothers, New Delhi, 1998.

Further Reading

• J. Y. A. Wang, and E. H. Adelson. Representing Moving Images with
Layers. IEEE Transactions on Image Processing, Vol. 3, No. 5,
September 1994, pp. 625–638.

20

