
IMAGE INPAINTING AND TEXTURE SYNTHESIS: TWO METHODS FOR HOLE FILLING
IN IMAGES

Siddharth Jain

morpheus@eecs.berkeley.edu
Department of Electrical Engineering and Computer Science

University of California, Berkeley

ABSTRACT

This paper presents a discussion and comparison of two al-
gorithms for Hole Filling in images: given an image with
regions of missing RGB values (holes), determine the RGB
values or fill the holes from the information available from
the rest of the image. The hole filling problem occurs com-
monly in image processing/computer vision when unwanted
objects have to be removed from images or some sort of dis-
occlusion has to be performed. The first algorithm we dis-
cuss for hole filling is due to [1], referred to as the image
inpainting algorithm that attempts to fill the hole by stretch-
ing the geometric and photometric information available in
a thin band around the hole. The second algorithm is a copy-
paste method based on the idea of texture synthesis in [2].
Experimental results and analysis are provided.

1. INTRODUCTION

Consider the problem of hole filling in images: given an
image with regions of missing RGB values (holes), deter-
mine the RGB values from the information available from
the rest of the image. An example where this problem arises
is the removal of unwanted objects from images or handling
occlusion in images. Figure 2(a) shows an image in which
the building façade has been occluded by some foreground
objects marked as white in the image and we would like
to reconstruct what is hidden behind the foreground objects
based on the information available from the rest of the im-
age.

We discuss and compare two methodologies for hole
filling in images — the first one is due to [1] referred to
as image inpainting; the idea is to take a band around the
hole and to fill it using the geometric and photometric in-
formation contained in this band. The second approach is
based on synthesizing artificial texture in the hole. Before
we begin a discussion of hole filling algorithms, it is impor-
tant to realize that the hole filling problem is an intrinsically
ill-posed problem. Given a hole that is to be filled, there is
no clear and unique answer as to what the hole filled image

should look like. More importantly, there is no well defined
metric that tells whether one hole filled result is better than
another. The criterion that we have used to judge the perfor-
mance of a hole filling algorithm is whether the hole filled
image appears visually pleasing to a human observer or not.

The organization of the paper is as follows: in section 2
we introduce the image inpainting algorithm. Section 3 in-
troduces the copy-paste method. Section 4 provides some
implementation details related to image inpainting. Section
5 discusses and compares the two algorithms and presents
experimental results. Finally we end with conclusions in
section 6.

2. THE IMAGE INPAINTING ALGORITHM

This algorithm was introduced by [1] inspired by the works
of [3, 4] and has been extended in [5, 6, 7, 8]. In order
to fill a hole Ω, a thin band is taken around the hole and
the algorithm attempts to fill the hole using the geometric
and photometric information contained in the band. This
is done by using a variational continuation framework and
attempting to continue the level sets of the image inside the
hole by minimizing an energy functional. Specifically as
per [1], every pixel (x, y) in the hole, is updated iteratively
as follows:

In+1(x, y) = In(x, y) + ∆tInt (x, y)∀(x, y) ∈ Ω (1)

where ∆t is a time step set equal to 0.1 and Int (x, y) is the
update at pixel (x, y) given by

It(x, y) =

(
δL(x, y) ·

⃗N(x, y)

| ⃗N(x, y)|

)
|∇I(x, y)| (2)

δL(x, y) = (L(x+ 1, y)− L(x− 1, y), L(x, y + 1)− L(x, y − 1)) (3)

where L is the laplacian given by

L(x, y) = Ixx(x, y) + Iyy(x, y) (4)

and
⃗N(x, y) = ∇⊥I(x, y) (5)

is the normal to the gradient at (x, y).

Fig. 1. Illustrating the Copy-Paste method

After every A = 15 steps of inpainting as described by
above equations, B = 2 steps of anisotropic diffusion are
applied to mitigate the effects of noise while preserving the
edges.

3. THE COPY PASTE METHOD

This method of hole filling is based on the idea of syn-
thesizing artificial texture in the holes. For an early paper
on hole filling using texture synthesis see [9]. The copy-
paste method we describe here is conceptually a very sim-
ple method based on the idea of texture synthesis in [2].
The holes are filled by copying and pasting suitable blocks
from other parts of the image. The method is illustrated in
Figure 1. For recent similar and independent work see [10].

The image is scanned pixel by pixel in raster scan order
and pixels at the boundary of holes are stored in an array to
be processed. A window w is taken centered at a hole pixel
p and the image is searched for a window bestmatch(w)
which (a) has the same size as w (b) lies in a search region
ws which typically is a large window having same center
as w (c) does not contain more than 10% hole pixels and
(d) matches best with w. If the difference between w and
bestmatch(w) is below a threshold, the bestmatch is clas-
sified as a good match to w and hole pixels of w are re-
placed with corresponding pixels in bestmatch(w). For the
method to work well we need a suitable metric that accu-
rately measures the perceptual difference between two win-
dows, an efficient search process that finds the bestmatch of
a window w fast, a decision rule that classifies whether the
bestmatch found is a good match or not, and a strategy of

dealing with cases when the bestmatch of a window w is not
a good match. In our algorithm the difference between two
windows consists of two components: (a) the sum of color
differences of corresponding pixels in the two windows, and
(b) the number of outliers for the pair of windows. These
components are weighted appropriately to compute the re-
sulting difference. An efficient search is performed by con-
structing a hierarchy of Gaussian Pyramids [11], and per-
forming an exhaustive search at the coarsest level to find a
few good matches, which are then successively refined at
finer levels of the hierarchy. We use an adaptive window
size to find matching blocks in the image from where ap-
propriate texture can be copied and pasted over the hole. In
cases when no good match is found, the hole pixels are filled
by averaging the known neighbors if the pixel variance of
the neighbors is low; otherwise the colors of hole pixels are
set equal to the value of randomly chosen neighbors. More
details can be found in [12].

4. INPAINTING — IMPLEMENTATION DETAILS

We have tried to implement a reasonably efficient version
of the inpainting algorithm as described in [13]. Following
points are worth mentioning:

• For an image define

γ =
number of hole boundary pixels

total number of hole pixels
(6)

In this paper we will associate the notion of thickness
of a hole to the value of γ for an image in the follow-
ing way: thick holes imply small values of γ and vice
versa.

• If the holes are thick, Gaussian Pyramids of the image
are created and the algorithm works from coarser to
finer levels. Specifically the image is convolved with
a Gaussian and subsampled repeatedly while (a) γ <
0.4, and (b) number of hole pixels >= 512, and (c)
number of subsampling operations performed < 4.

• Initialization: The pixel values in the holes are ini-
tialized as follows: Consider a 3×3 window centered
at an unknown pixel. Perhaps the simplest way to fill
the pixel is to average the values of the known pixels
in the 3×3 window and assign the average value to the
unknown pixel. But if the values of neighbors differ
significantly then averaging can lead to appearance
of spurious colors and blurring. In case of high pixel
variance, instead of averaging, the unknown pixel can
be assigned the value of a randomly chosen neighbor.
We call this method of interpolation as SimpleInter-
polation. The holes are initialized using SimpleInter-
polation starting from the boundary pixels and prop-
agating inwards. This is the same technique we use

in the copy-paste method to fill holes when no good
matches are found in the image. In fact if the hole
pixels are filled by averaging the neighbors starting
from the periphery of the hole and propagating in-
wards, then the result obtained approximates the so-
lution of the Laplace Equation in the hole subject to
known boundary values, the so called Dirichlet prob-
lem in classical physics. This can be proved by using
the mean value theorem [14].

5. INPAINTING VS. COPY-PASTE

We tested the inpainting and copy-paste method on a dataset
of 8 images. Two test cases comprise of input images that
are taken from earlier papers [1] and can be used to ver-
ify our implementation of the inpainting algorithm. All
the computation is done on an Intel Pentium processor run-
ning at 2.0 GHz and operating on Windows OS. A sin-
gle set of parameters is used in all the computations. Due
to space restrictions we only show the images for two test
cases in this paper in Figure 2-3. The results for the other
test cases can be seen at http://www.awargi.org/
holefilling/index.html. Table 1 shows approxi-
mate processing time.

It is found that the inpainting methods are appropriate
for filling thin holes in non-textured regions but suffer from
the limitation of local inpainting i.e. image inpainting does
not rely on global feature or pattern recognition [7]. Also
it must be remarked that when holes are thin, other sim-
pler methods like linear interpolation of surrounding values
or SimpleInterpolation introduced in this paper give results
comparable to that obtained with inpainting and at a frac-
tion of the computational cost. The copy-paste method on
the other hand performs better on thicker holes and is more
suited for filling texture holes in images as evidenced in the
figures and table 1. Following salient features of the copy-
paste method emerge:

• The method works well on holes in repetitive pat-
terns, textures and smooth regions.

• The method is able to detect and complete straight
edges and linear features satisfactorily because it is
able to take a small sample of a line and replicate it to
extend the line. Note this for example in figure 3.

• The method does not suffer from the limitation of lo-
cal inpainting.

• The method is capable of filling holes in an iterative
fashion that are larger than the matching window it-
self.

• There is an inherent assumption that there exists some
region in the image which can be copied and pasted

Image γ Inpainting Copy-Paste
Graffiti1 0.8347 0.4 0.4
Graffiti2 0.7372 0.3 0.3

Campanill 0.1898 0.3 0.1
Atlas42 0.1226 >2 0.15
Atlas54 0.1090 >2 1.86

WellsFargo 0.0783 >2 0.07
Vegas3 0.0425 1.55 0.08
Pier39 0.0386 1.36 0.02

Table 1. Table showing approximate processing time in
hours for the test cases in the paper.

over a hole — this actually turns out to be true in
many natural images. Nevertheless there should be
some strategy of dealing with cases when there is no
good match that can be copied and pasted.

Finally, in its basic form (without making a Gaussian
Pyramid hierarchy), the runtime of the inpainting algorithm
is linear in the number of hole pixels in the image. The
runtime of the copy-paste method is not so easy to analyze
and depends on various factors:

• The size of the search region in which the matching
block is searched.

• If the algorithm is able to find large matching blocks
it fills the holes much more rapidly than in the case
when matching blocks are small sized or when there
are no matching blocks at all.

Nevertheless, usually the copy-paste method fills the holes
faster than the inpainting algorithm as evidenced from the
results.

6. CONCLUSION

We presented a discussion of two methodologies for hole
filling — inpainting and texture synthesis. Inpainting per-
forms better when γ is large such as γ > 0.6 and suffers
from the limitation of local inpainting which limits its use-
fulness for filling texture holes in images. Texture synthesis
based hole filling such as the copy-paste method described
here is more suited for filling texture holes and holes that
have lower values of γ. An interesting paper that combines
the two approaches is [15] in which the authors fill holes due
to lost blocks in wireless video transmission; the algorithm
decides whether the hole is in a textured region or not using
the test described in [16]. If the hole lies in a non-textured
region it is filled using inpainting; otherwise it is filled using
texture synthesis.

(a) (b) 0 200 400 600 800 1000 1200
0.08

0.1

0.12

0.14

0.16

0.18

0.2

time

m
ea

n
up

da
te

mean update as fn. of time for wellsfargo

(c) (d)

Fig. 2. WellsFargo. γ = 0.0783. Original image size 667×349 (a) input image (b) result of inpainting after more than 2
hours (c) mean update given by equation (2) plotted as a fn. of time. The jumps in the plot occur when the algorithm switches
from one level to another in the Gaussian Pyramid hierarchy. (d) result of copy-paste. time taken = 0.07 hours.

(a) (b) (c)

Fig. 3. atlas42. γ = 0.1226. Original image size 326×347 (a) input image (b) result of inpainting after more than 2 hours (c)
result of copy-paste. time taken = 0.15 hours.

7. ACKNOWLEDGEMENTS

This work was sponsored by Army Research Office under
contract DAAD19-00-1-0352.

8. REFERENCES

[1] Marcelo Bertalmio, Guillermo Sapiro, Vicent Caselles, and
Coloma Ballester, “Image inpainting,” in SIGGRAPH 2000,
Computer Graphics Proceedings, Kurt Akeley, Ed. 2000, pp.
417–424, ACM Press / ACM SIGGRAPH / Addison Wesley
Longman.

[2] Alexei A. Efros and William T. Freeman, “Image quilting for
texture synthesis and transfer,” in SIGGRAPH 2001, Com-
puter Graphics Proceedings, Eugene Fiume, Ed. 2001, pp.
341–346, ACM Press / ACM SIGGRAPH.

[3] M. Nitzberg, D. Mumford, and T. Shiota, Filtering, Segmen-
tation and Depth, Springer-Verlag, Berlin, 1993.

[4] S. Masnou and J.M. Morel, “Level-lines based disocclusion,”
in Fifth IEEE International Conference on Image Processing,
1998, pp. 259–263.

[5] C. Ballester, M. Bertalmio, V. Caselles, G. Sapiro, and
J. Verdera, “Filling in by joint interpolation of vector fields
and gray levels,” IEEE Trans. Image Processing, pp. 1200–
1211, August 2001.

[6] C. Ballester, V. Caselles, J. Verdera, M. Bertalmio, and
G. Sapiro, “A variational model for filling-in gray level and
color images,” in Proc. Eighth IEEE International Confer-
ence on Computer Vision, 2001, vol. 1, pp. 10–16.

[7] Tony Chan and Jianhong Shen, “Mathematical models for lo-
cal nontexture inpaintings,” SIAM Journal on Applied Math-
ematics, vol. 62, no. 3, pp. 1019–1043, 2001.

[8] Tony Chan and Jianhong Shen, “Nontexture inpainting by
curvature-driven diffusions (cdd),” J. Visual Comm. Image
Rep., vol. 12, no. 4, pp. 436–449, 2001.

[9] H. Igehy and L. Pereira, “Image replacement through texture
synthesis,” in Proc. Fourth IEEE International Conference
on Image Processing, 1997, pp. 186–189.

[10] A. Criminisi, P. Perez, and K. Toyama, “Object removal by
exemplar-based inpainting,” in IEEE CVPR, 2003, pp. 721–
728.

[11] D.A. Forsyth and J. Ponce, Computer Vision — A Modern
Approach, chapter 7, Prentice-Hall, 2002.

[12] Siddharth Jain, “Hole filling algorithms for images with ap-
plications to automatic generation of 3D building façades,”
M.S. thesis, University of California, Berkeley, May 2003.

[13] Marcelo Bertalmio, Processing of Flat and Non-Flat Image
Information on Arbitrary Manifolds using Partial Differen-
tial Equations, Ph.D. thesis, University of Minnesota, 2001.

[14] D. J. Griffiths, Introduction to Electrodynamics, chapter 3,
pp. 112–115, Prentice-Hall, second edition, 1989.

[15] S. Rane, G. Sapiro, and M. Bertalmio, “Structure and texture
filling-in of missing image blocks in wireless transmission
and compression,” in Proc. Ninth IEEE International Con-
ference on Image Processing, 2002, vol. 1, pp. 317–320.

[16] K. Karu, A.K. Jain, and R.M. Bolle, “Is there any texture
in the image?,” in Proc. 13th International Conference on
Pattern Recognition, 1996, vol. 2, pp. 770–774.

